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ABSTRACT 

Blocks-based programming environments are a popular tool 

to teach children to program, but they rely heavily on visual 

metaphors and are therefore not fully accessible for children 

with visual impairments. We evaluated existing blocks-

based environments and identified five major accessibility 

barriers for visually impaired users. We explored 

techniques to overcome these barriers in an interview with a 

teacher of the visually impaired and formative studies on a 

touchscreen blocks-based environment with five children 

with visual impairments. We distill our findings on usable 

touchscreen interactions into guidelines for designers of 

blocks-based environments. 
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INTRODUCTION 
Recently there has been a big push to incorporate computer 

science education in K-12 classrooms. As part of this effort, 

blocks-based programming environments, such as Scratch 

[15] and Blockly [5] have become very popular [2]. These 

blocks-based environments use a puzzle-piece metaphor, 

where operations, variables and constants are 

conceptualized as “blocks”, puzzle-pieces that can be 

dragged and dropped into a program. These blocks will 

only snap into place in a location if that placement 

generates syntactically correct code. Because these 

environments remove the syntax complexities, they can be 

a good choice for an introduction to programing and are 

used heavily in curricular materials and outreach efforts for 

K-12 education; for example, 60 of the 72 computer-based  

projects for pre-reader through grade 5 on the Hour of Code 

website use blocks-based environments [27].  

Unfortunately, these environments rely heavily on visual 

metaphors, which renders them not fully accessible for 

students with visual impairments. As these students are 

already underrepresented and must overcome a number of 

barriers to study computer science [17,21], it is important 

that they have equal access to curriculum in primary 

schools, at the start of the computer science pipeline.  

To help with this goal, we evaluated existing blocks-based 

environments to answer the following research question: 

RQ1: What are accessibility barriers in existing blocks-

based programming environments for people with visual 

impairments?  

We identified five main accessibility problems, and built 

Blocks4All, a prototype environment where we 

implemented various means to overcome these barriers 

using a touchscreen tablet computer. We chose to 

implement this as an Apple iPad application, as iPads have 

a built-in screen reader and zoom capabilities, making them 

accessible for children with visual impairments. We worked 

with a teacher of the visually impaired (TVI) and 5 children 

with visual impairments who used Blocks4All to determine 

the usability of these techniques and answer the following 

questions: 

RQ2: What touchscreen interactions can children with 

visual impairments use to identify blocks and block types?  

RQ3: What touchscreen interactions can children with 

visual impairments use to build blocks programs? 

RQ4: What touchscreen interactions can children with 

visual impairments use to understand the spatial structure 

of blocks program code? 

Our contributions are: 

(1) an understanding of accessibility barriers in blocks-

based environments for children with visual impairments, 

(2) design guidelines for designing blocks-based 

environments and touchscreen applications for children 

with visual impairments, drawn from interviews and 

formative testing with children and a TVI, and 
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(3) the Blocks4All application itself, as the source code and 

application are freely available.1 

RELATED WORK 

We discuss research in making computer science more 

accessible for students with visual impairments and in 

making touchscreen interfaces more accessible. 

Accessible Computer Science Education 

Several researchers have explored making computer science 

education more accessible, although most the work has 

been for text based environments [13,14,19–21]. While 

these tools make text-based programming easier and more 

accessible for people with visual impairments; they are all 

designed for older people and are not as usable for young 

children who may still be developing literacy skills. 

Researchers have also looked at developing tools to 

introduce programming to younger children. Thieme et al. 

describe the development of Torino, a physical computing 

language, which consists of “instruction beads” that can be 

joined together to create programs, including literal loops 

and threads [23].  

 

Figure 1: Image comparing the three main components 

(toolbox, workspace and program output) of blocks-based 

environments in (a) the Scratch environment [15] and (b) a 

version of the Blocks4All environment. In Blocks4All, we used 

a robot as the accessible program output, so only needed a 

button on the screen to run the program. The Blocks4All 

environment shows a “Repeat Two Times” loop with a nested 

“Make Goat Noise” block and a nested “If Dash Hears a 

Sound, Make Crocodile Noise” statement. 

Blocks-based Programming Environments 

Blocks-based environments consist of a toolbox of blocks 

that can be dragged and dropped into a workspace to create 

a program, which can be run to produce some output. 

Figure 1 compares (a) the Scratch environment, one of the 

earliest and most popular blocks-based environments with 

(b) one version of the Blocks4All environment. Existing 

blocks-based environments are generally not accessible 

(discussed in the next section), but there are two exceptions 

to this rule. Researchers at the University of Colorado 

Boulder are developing a blocks programming environment 

[11,12] and Google has created Accessible Blockly [6]. 

Both environments use hierarchical menus to represent both 

the toolbox and workspace, which can be navigated with 

                                                           
1 https://github.com/milnel2/blocks4alliOS 

screen readers. These are both web-based applications 

designed to work well with desktop-based screen readers. 

Instead of designing a separate interface for visually 

impaired children, our goal was to provide insights into 

how to make existing block-based environments universally 

accessible. To do so, we closely mimicked existing block-

based environments and used touchscreens, which we 

believe may be easier for young children to use. 

Touchscreen Accessibility 

With the introduction of VoiceOver [28] and Talkback [29] 

screen readers on iOS and Android platforms, respectively, 

touchscreen devices have become very popular among 

people with visual impairments [30]. The screen readers use 

an interaction technique similar to one introduced by Kane 

et al. [8], where a user can explore the screen with a single 

finger. As elements on the screen are touched they are 

described via speech, and they can be selected via a double 

tap anywhere on the screen. There are simple touchscreen 

multi-touch gestures to scroll down or move left and right 

to new screens, so that one-finger touch does not 

accidentally change screens.  This interaction method 

allows a visually impaired user to understand the spatial 

layout of elements on the screen.  

As these screen readers are built in to the touchscreen 

devices, they interact well with applications that use 

standard iOS and Android elements. However, applications 

with custom visual elements (such as blocks) and gesture-

based interactions (such as drag and drop) are often not 

accessible. As of iOS 11, there are two VoiceOver methods 

to replace drag and drop for items on Apple touchscreen 

devices. The first is a double tap and hold, which allows the 

user to access the underlying drag gesture (and which must 

be augmented with audio descriptions of where you are 

dragging the item). The second is a select, select, drop, in 

which you select an item, pick the drag option out of a 

menu of actions and then select a location to place the item. 

Both of these methods work to move applications on the 

home screen, but to work within applications, developers 

have to do extra work: provide the audio descriptions for 

the first method and have to include the action for the 

second method. 

Current research in touchscreen accessibility explores how 

adults with visual impairments input gestures and make 

sense of spatial information on touchscreens. Kane et al. 

[10] explored the gesture preferences of people with visual 

impairments for input on touchscreens. As design 

guidelines, they recommend that designers favor edges and 

corners, reduce demand for location accuracy by creating 

bigger targets and reproduce traditional spatial layouts 

when possible. Giudice et al. [4] used a vibro-audio 

interface on a tablet to help participants with visual 

impairments explore simple on-screen elements. They 

found that people could identify and explore small bar 

graphs, letters and different shapes, but that it was difficult 

for participants to move in straight line across the tablet and 
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suggested using secondary cues for helping them to stay 

straight. We incorporated these design guidelines into our 

initial design for Blocks4All, exploring if they need to be 

adapted for children with visual impairments.  

There has been less work on how to develop touchscreen 

applications for children with visual impairments. Milne et 

al. [18] developed Braille-based games for smartphones 

using the touchscreen. Their work shows that young 

children had difficulties with many of the gestures that are 

used by the screen reader and in many applications. 

Therefore, we chose to simplify the number of gestures 

used in our application. 

Similarly, there has been little work on touchscreen 

accessibility for people with low vision. Szpiro et al. 

investigated how people with low vision use computing 

devices and found that they prefer to rely on their vision as 

opposed to access information aurally [22]. However, they 

found the use of zoom features to be tedious and time 

consuming, and made it difficult to get contextual 

information as the zoomed in portion of the interface 

obscured parts of the rest of the screen. As we wanted to 

design both for children who are blind and those who have 

low vision, we incorporated their findings into our design, 

and allow users to enlarge portions of the interface, without 

obscuring other elements. 

ACCESSIBILITY OF EXISTING BLOCKS-BASED 
ENVIRONMENTS 

We evaluated 9 existing blocks-based environments, 

including the web-based environments of Scratch [15], 

Blockly [5], Accessible Blockly [6], Tynker [31], and Snap! 

[24] and the mobile-based environments Blockly (Android) 

[5], Scratch Jr (iOS) [3], Hopscotch (iOS) [32], and Tickle 

(iOS) [33] in March 2017. 

Methods 

We evaluated the web-based applications using the NVDA 

screen reader on Firefox and the mobile based ones with 

VoiceOver on iOS or Talkback on Android. The guidelines 

for evaluation were drawn from the WCAG 2.0 [34], 

Android [35] and iOS guidelines [1]. From the guidelines 

five  accessibility barriers emerged: (1) Accessing Output: 

is the output of the programming perceivable (related to 

WCAG Principle 1),  (2) Accessing Elements: are the 

menus and blocks perceivable (WCAG Principle 1), (3) 

Moving Blocks: can the blocks/code be moved and edited 

using a screen reader (WCAG Principles 2 and 3), (4) 

Conveying Program Structure: are the relationships 

between programming elements perceivable (WCAG 

Principle 1),  and (5) Conveying Type Information: are data 

types perceivable  (WCAG Principle 1). 

Modified Android Blockly 

The majority of the environments did not allow users to 

access the blocks via the screen reader and used 

inaccessible gestures. Because Android Blockly is open 

source we were able to build a Modified Android Blockly 

that fixed trivial accessibility problems (making the blocks 

accessible to the screen reader and replacing drag and drop 

with selecting a block and then selecting where you would 

like to place it) to gain insights into other interactions that 

may be difficult. We did pilot testing with two sighted 

adults using TalkBack to determine if there were more 

accessibility problems we should design for before testing 

with visually impaired children.  We describe both the 

accessibility problems we found with the original Blockly 

and the Modified Android Blockly. 

Accessibility Problems 

We address the five accessibility barriers below. 

Accessing Output 

We found that Scratch, ScratchJr, Hopscotch, Tynker and 

both versions of Blockly had some audio output options, 

but the majority of the games and projects focused on visual 

output, such as animating avatars. The Tickle application 

also had audio output and could be used to control robots, 

giving more accessible options. Accessible Blockly is not 

currently part of development environment, so there is no 

output to evaluate on. 

Accessing Elements 

We found that, with the exception of Accessible Blockly 

and the Tickle application, it was impossible to focus on 

blocks in the toolbox or in the workspace using a screen 

reader. This is a trivial fix, but it rendered all the other 

environments completely inaccessible for screen reader 

users. 

Moving Blocks 

All the applications except Accessible Blockly relied on 

drag and drop to move the blocks from the toolbox to the 

workspace. Although it is technically feasible for drag and 

drop to work with screen readers (e.g. with VoiceOver on 

iOS, you can double tap and hold to perform an underlying 

gesture), extra information must be provided to place the 

blocks. Without the extra information, the user will be 

unaware of the current location of the block and where their 

intended target is in relation to their current location. 

The Tickle application augments drag and drop by 

providing an audio description of the current location of the 

block as the blocks are dragged across the screen. It does 

not work with Apple’s version of select, select, drop. With 

Accessible Blockly, blocks are placed in the workspace by 

selecting the place in the workspace where you would like 

the block to go, and then selecting the block you would like 

to place there from a menu that pops up. We tested both the 

Accessible Blockly and the Tickle method for placing and 

moving blocks in the workspace in the initial design for 

Blocks4All. 

Conveying Program Structure 

When testing the Tickle application and the Modified 

Android Blockly application with TalkBack, we found it 

was very difficult to determine the structure of the program. 

When blocks were nested inside of each other, as in a ‘for’ 

loop or ‘if’ statement, it was impossible to tell where the 
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nesting ended and which blocks were outside. Additionally, 

it was difficult to locate blocks on the screen and difficult to 

navigate in a straight line (similar to what Kane et al. [9] 

found) either down between block statements or 

horizontally to find nested blocks. In Accessible Blockly, 

program structure is conveyed in a hierarchical list, with 

nested statements contained as sublists under their 

containing statement. In our initial designs, we chose to 

represent this hierarchy aurally and spatially. 

Conveying Type Information 

In all the applications, apart from Accessible Blockly, type 

information was conveyed visually via the shape and color 

of the block. This is not accessible via screen reader and 

due to the size of the blocks not very accessible for people 

with low vision. Some applications (e.g. ScratchJr) avoid 

the need for types by having drop down menus to select 

certain typed options (e.g. having a menu with the number 

of times a repeat loop will repeat as opposed to introducing 

a type for numbers). Accessible Blockly explicitly names 

the type needed at each location (e.g. Boolean needed) and 

the type of each block is listed in the toolbox.  

DESIGN EXPLORATION 

In designing our environment, we wanted to create an 

environment that was independently usable by and 

engaging for people who are sighted, who have low vision 

and who are blind, making only changes that could be 

adopted by existing blocks-based environments. 

Additionally, we wanted to support the features of blocks-

based environments that make them suitable for young 

children: (1) a lack of syntax errors due to blocks that are 

units of code, which can only fit in places that are 

syntactically correct, (2) code creation using a menu of 

blocks that relies on recognition instead of recall, and (3) 

clear hints about the type and placement of blocks, which in 

traditional blocks-based environments is conveyed via 

shape and placement of blocks. 

We chose to develop Blocks4All on a touchscreen device, 

and specifically an iPad, for multiple reasons: (1) they are 

popular among people with visual impairments and have a 

state-of-the-art screen reader that is built-in [30], (2) they 

are easy to use and popular for children in educational 

contexts (iPads are actually provided to every child in some 

school districts), (3) many blocks-based environments are 

already available as touchscreen applications [3,33], and (4) 

touchscreens used with a screen reader allow for spatial 

exploration of the screen, which could be useful for 

conveying program structure.  

Initial Design  

The initial design of Blocks4All was based on prior 

research and our own design exploration.  We summarize 

our different approaches to overcome the five accessibility 

barriers we identified. 

Accessing Output 

We created a blocks-based environment that can be used to 

control a Dash robot [26], as this makes for tangible output 

that is very accessible for children with visual impairments. 

We included commands to move the robot (e.g. “Drive 

Forward/Backward”, “Turn Right”), for the robot to make 

sounds (e.g. “Bark like a Dog”, “Say Hi”), as well as repeat 

and ‘if’ statements.  

Accessing Elements 

In our design, blocks can be accessed using VoiceOver, 

which provides the name, the location and the type of the 

block, (e.g. “Drive Forward, Block 2 of 4 in workspace, 

operation”). We also give hints on how to manipulate the 

blocks (e.g. “double tap to move block”). Blocks in the 

workspace are placed along the bottom of the screen to help 

with orientation, as it is easy for blind users to “drift off 

course” when tracing elements on a touchscreen [9,21].  

 

Figure 2. Two methods to move blocks: (a) audio-guided drag 

and drop, which speaks aloud the location of the block as it is 

dragged across the screen (gray box indicates audio output of 

program) and (b) location-first select, select, drop, where a 

location is selected via gray “connection blocks”, then the 

toolbox of blocks that can be placed there appears. 

Moving Blocks 

We initially explored two methods to move blocks: (1) 

audio-guided drag and drop, with a similar set-up to 

traditional blocks-based environments with the toolbox on 

the left side of the screen and which gives feedback about 

where in the program a block is as it is dragged across the 

screen (e.g. “Place block after Move Forward Block”) 

(Figure 2a), and (2) location-first select, select, drop, where 

a location is selected in the workspace via “connection 

blocks,” which represent the connecting points of the block 

(analogous to the jigsaw puzzle piece tabs in the visual 

version), and then a full screen menu pops up with the 

toolbox of blocks that can be placed at that location (Figure 

2b). This is slightly different from traditional blocks-based 

environments, in which you first select the block and then 

the location to place it, but it is logically similar to the 

method used in Accessible Blockly, although the physical 

manifestation is different.  
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Figure 3. Two methods to indicate the spatial structure of the 

code: (a) a spatial representation with nested statements 

placed vertically above inner blocks of enclosing statements, 

and (b) an audio representation with nesting communicated 

aurally with spearcons (shortened audio representations of 

words). 

Conveying Program Structure 

We tested two methods to indicate the spatial structure of 

the code. The first is a spatial representation with repeat 

loops and conditionals represented with both a start and an 

end block and nested statements placed vertically above 

special inner blocks of their enclosing statements (Figure 

3a). Navigating with VoiceOver, users can determine if or 

how deeply nested a statement is, by counting the number 

of “Inside _” blocks below it. The second is an audio 

representation with start and end blocks for the enclosing 

statements. When nested blocks are selected, nesting is 

communicated aurally with spearcons: short, rapidly spoken 

words, in this case “if” and “repeat” [25] (Figure 3b).  

 

Figure 4. The first method to access different block types: 

embedded typed blocks, accessed from a menu embedded 

within each block (e.g. "Repeat 2/3 times")

 

Figure 5. The second method to access different block types: 

audio-cue typed blocks, when a typed block in the toolbox and 

the blocks in the workspace that accept it play the same 

distinct audio cues. 

 Conveying Type Information 

 Our prototype application supports three types of blocks: 

(1) operations (e.g. “Drive Forward”), (2) numbers (used in 

conjunction with repeat loops and as distances for driving 

blocks), and (3) Boolean statements (e.g. “Hears Sound” 

and “Senses Obstacle” used in conjunction with ‘if’ 

statements). We explored two methods to access these 

different block types. The first is embedded typed blocks 

within operation blocks. These can be accessed from a 

menu embedded within each block (e.g. “Drive Forward 

10/20/30”) (Figure 4). To access these menus with 

VoiceOver, you select the containing block and then swipe 

up or down to cycle through the options. This is similar to 

the approach taken in the ScratchJr [3] and the Dash robot 

[26] applications. The second is audio-cue typed blocks 

(Figure 5). In this method, when a number or Boolean block 

is selected with VoiceOver in the menu, it plays a distinct 

audio cue (two short low-pitched notes for numbers and 

two short high-pitched notes for Booleans), and the 

workspace blocks play matching audio cues for the types 

they can accept (‘if’ statements play two short high-pitched 

notes as they can accept Booleans). This information is also 

conveyed visually with the shapes of the blocks: ‘if’ 

statements have a triangular top tab and Booleans have an 

inverted triangle to indicate they fit together, while repeat 

statements have a rectangular top tab and numbers have an 

inverted rectangle (Figure 5). The visual approach is similar 

to traditional blocks-based environments (e.g. Blockly [5] 

and Scratch [15]), but the tabs are larger to accommodate 

users with low vision.  

DESIGN OF FORMATIVE STUDY AND INTERVIEW 

Interview with Teacher of the Visual Impaired 

To collect feedback on our initial designs, we conducted a 

semi-structured interview with a teacher of the visually 

impaired (TVI), who works with elementary school-aged 

children in a local district. We asked about her work 

teaching children how to use technology and the assistive 

tools (screen readers, zoom, connectable braille displays, 

etc.…) on touchscreen devices. We also asked her to 

provide feedback on our different designs, and we include 

her feedback in the discussion below on our design. 

Participants with Visual Impairments 

We recruited 5 children (3 male) aged 5-10 with visual 

impairments through our contacts with teachers of the 

visually impaired for a formative study (Table 1). Two of 

the children (P4, P5) used VoiceOver exclusively (P4 has 

some residual sight), one (P2) relied on sight and 

occasionally used VoiceOver to explore new blocks, and 

two children relied entirely on sight (P1, P3), holding the 

application close to their faces to read. 

Methods 

The children participated in one to four 60-90 minute 

sessions in which they programmed a Dash robot [26] using 

an iPad running iOS 10.3.3.  
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In each session, we introduced them to the interfaces using 

cardboard cutouts with Braille and large lettering to indicate 

the different application elements. For each of three 

sessions, the children used two interfaces (counterbalanced 

between children) to complete four simple tasks for each 

interface and then had free time to program the robot to do 

whatever they pleased. These tasks were modeled after the 

tasks in the hour of code for the Dash robot [26], but were 

modified to work for children with low vision (e.g. “Have 

Dash drive forward, turn right and drive forward to run into 

an obstacle”).  

In the first session, the children tried the two methods for 

moving blocks. Based on his age and shorter attention span, 

P3 only participated in this first session. In the second 

session, we introduced repeat loops, and the children used 

the two different methods for conveying program structure. 

In this session, we had tasks that required single and double 

nested repeat loops (e.g. “Have Dash drive in a square using 

only one forward and one turn left block”). In the third and 

fourth sessions, we introduced ‘if’ statements, and the 

children used the different methods for accessing type 

information. P1 and P2 used the embedded typed blocks in 

session 3 and the audio-cue typed blocks in session 4, and 

P3 and P4 used both in session 3. In these later sessions, we 

had tasks that required using different conditions for repeat 

loops and conditionals (e.g.  “Have Dash ‘Say Hi’ if he 

hears a sound”).  

Measures 

For each task, we video-recorded the children and evaluated 

the interfaces for usability issues. We also measured the 

time it took to complete the task and signs of excitement 

(exclamations, laughing and smiling) and 

tiredness/boredom (yawns, frowns) [7]. At the end of each 

session, we asked for feedback on the different interfaces. 

In the final session, we asked the children questions from 

the scales for interest/enjoyment, perceived competence and 

effort/importance from Intrinsic Motivation Inventory to 

determine how engaged and motivated they felt during the 

programming activities [16]. The questions were trivially 

changed to match the tasks from the study (e.g. “I think I 

am pretty good at this activity” became “I think I am pretty 

good at programming robots”). Based on the small number 

and wide range in ability and age of participants, we report 

only summaries of our findings on the usability of the 

interfaces. 

RESULTS OF FORMATIVE STUDY AND INTERVIEW 

We report on the feedback from the formative study and 

interview, and the resulting changes to the design of 

Blocks4All. 

Accessing Output 

We chose to use the Dash robot as the output for the 

programming tasks. All five of the children greatly enjoyed 

using the robot, and three of the five children asked to be 

photographed with the robot. All the children, even those 

with very little or no functional vision were able to hear the 

robot and follow its movements by placing a hand on it. In 

order to make it clear to the children when they successfully 

completed a task such as “Have Dash move in a square”, 

we created towers out of wooden blocks that the robot 

would knock down for each segment of the task (e.g. in 

each corner of the square). All of the children thought this 

was quite fun. We did not explore any other accessible 

programming outputs in the study, but would like to add the 

option of recording or typing your own audio for the robot 

to speak in future prototypes. 

Accessing Elements 

To answer to the first part of RQ2: What touchscreen 

interactions can children with visual impairments use to 

identify blocks and block types? we found that children in 

our study could access blocks in our prototype application 

most easily when the blocks (1) were aligned along the 

bottom of the screen, (2) were resizable, (3) were separated 

by white space, and (4) could be accessed with both 

VoiceOver and through a keyboard. We elaborate on our 

findings below. 

Initial Findings 

All the children could focus on the blocks in Session 1; 

however, P5 had difficulty selecting blocks using the 

standard double tap gesture with VoiceOver, so for later 

sessions, she used a Bluetooth connected keyboard 

connected to the iPad to do the selection. The keyboard was 

Participant Age Gender 
Evaluation 

Sessions 

Level of 

Corrected Vision 
Previous Technology Use 

P1 8 Female 4 20/150 
Lots of experience with screen readers, 

uses iPads and tablets. 

P2 8 Male 4 20/80-20/100 
Uses iPad at school as assistive technology 

device with both VoiceOver and Zoom 

P3 5 Male 1 20/100 Uses iPads at home for games. 

P4 10 Male 3 20/400 
Uses VoiceOver on iPad and iPhone. Uses 

Apple computer, Braille, CCTV, Kindle. 

P5 9 Female 3 
Totally blind, no 

light perception 

Uses iPad at school with VoiceOver and 

refreshable Braille reader and Braille Note. 

Table 1. Participant Details. 

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 69 Page 6



used with “Quick Navigation” on in conjunction with 

VoiceOver to focus on items in the application using left 

and right arrows and to select items by using the up and 

down arrows simultaneously [36].   

None of the children with some vision (P1, P2, P3, and P4) 

used the zoom function on their iPad to view the blocks, 

instead they relied on VoiceOver or held the iPad within 

inches of their faces. In our interview with the TVI, she 

reported that often children had difficulty using the zoom 

feature because they had to switch between getting an 

overview of the application to focusing in on an element.  

Design Modifications 

Based on the feedback of the children with some vision, we 

added high contrast white space between the blocks in the 

toolbox and made the blocks resizable in both the toolbox 

and the workspace for all participants after session 1. This 

allowed children with some sight to see the details on the 

blocks, but still left the application layout the same so that 

they could get an overview of the program. 

Moving Blocks 

In answer to RQ3: What touchscreen interactions can 

children with visual impairments use to build blocks 

programs? we explored multiple techniques to move blocks 

and found that (1) all the children in our study could use the 

select, select, drop method, (2) none of the children could 

not use the audio-guided drag and drop method with 

VoiceOver and (3) all the children preferred first choosing a 

block to move as opposed to a location to move it to when 

using the select, select, drop method. We elaborate on our 

findings below. 

Initial Findings 

All of the children had difficulty with the audio-guided 

drag and drop method. Neither of the children (P4, P5) that 

used VoiceOver could perform the VoiceOver-modified 

drag and drop gesture. The children that relied on sight with 

the iPad held close to their faces (P1, P3) found the drag 

and drop gesture difficult to perform as well, because 

moving the iPad to see the blocks interfered with the 

gesture. The location-first select, select, drop method 

worked well, and the children were able to complete all the 

tasks. However, P5 found that switching to a new screen to 

select a block after selecting a location was confusing with 

VoiceOver. In the post-session interviews, P2 and P4 

expressed that they liked the idea of selecting a block first 

and then a location (as in the drag and drop interface) 

better. Also, the TVI noted that many VoiceOver users use 

the item chooser where you can search for an element on 

the current screen by name, making it faster to use an 

interface if you do not have to switch between screens to 

access items.  

Design Modifications 

We created a hybrid of our two methods: blocks-first select, 

select, drop, where blocks are selected from the toolbox on 

the left side of the screen. Then the application switches 

into “selection mode”, where the toolbox menu is replaced 

with information about the selected block, and a location 

can be selected in the workspace. All the participants who 

participated in two or more sessions (P1, P2, P4 and P5) 

used this method after session 1 and stated that they 

preferred this “hybrid” method to either of the two original 

methods. 

Conveying Program Structure 

In answer to RQ4: What touchscreen interactions can 

children with visual impairments use to understand the 

spatial structure of blocks program code? we found that 

children were able to understand program structure using 

both the spatial and audio representations we explored, 

and most participants preferred the spatial representation.  

Initial Findings 

The participants were able to understand both the spatial 

and audio representations of the program structure. P1, P2, 

P4, and P5 could complete all tasks with both 

representations (P3 did not attempt to use either as he only 

participated in the first session). Both P1 and P4 preferred 

the spatial representation, and P4 noted that he did not pay 

attention to the spearcons when using VoiceOver in the 

audio representation. The TVI noted that many children 

with visual impairments use a spatial mental model to 

remember information, so she thought the spatial interface 

would help with recall. P2 thought the spatial representation 

was easier to use, but thought that the audio presentation 

“looked nicer”.  

Design Modifications 

After the second session, we used the spatial 

representation to convey program structure. We modified 

the order that VoiceOver read the blocks in the spatial 

representation so that it focused on the contained block first 

followed by the “Inside _” blocks (e.g. “Drive Forward 

Block” followed by “Inside Repeat Two Times”). 

Conveying Type Information 

In answering the second part of RQ2: What touchscreen 

interactions can children with visual impairments use to 

identify blocks and block types? we found that children 

were able to use both methods to select blocks, but that the 

audio-cue typed blocks need better cues for children who 

are not using VoiceOver. We elaborate on these findings 

below. 

Initial Findings 

All participants, other than P3 who did not attempt it, were 

able to use both methods of selecting typed blocks. P2 and 

P5 had some difficulty scrolling through the menus to select 

the embedded typed blocks, but both were able to do so 

after some practice. We found that the children who used 

VoiceOver (P4, P5) with the audio-cue typed blocks had an 

easier time determining where Boolean and number 

statements could fit, as they received the audio cues from 

VoiceOver and could listen for it as they chose where to 

place the blocks. The children who did not use VoiceOver 

(P1, P2) often tried to place the typed blocks in places 

where they could not go, indicating that the visual cue was 
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not enough. Additionally, although the children found the 

number blocks quite easily in the toolbox, it took some trial 

and error for them to find the Boolean type blocks, likely 

because they were less familiar with that type. This was not 

a problem with the embedded typed blocks as the typed 

blocks were contained inside the conditional and repeat 

blocks and were not in the toolbox menu. 

Design Modifications 

Although it was more difficult for the children to grasp, we 

plan to use the audio-cue typed blocks in the future, as this 

method allows for more flexibility in creating blocks and 

programs and can more easily accommodate creating more 

complex statements. However, we plan to add better visual 

and audio cues when VoiceOver is not on, such as 

highlighting the blocks where a typed block will fit and 

using an error sound to indicate if a block cannot be placed 

in a location.  

Other Feedback 

We received positive feedback on our interfaces. The 

children liked the all the interfaces: all 5 reported that they 

thought the tasks were a 5 or “really fun” on a Likert fun 

scale after using each interface. Using the Intrinsic 

Motivation Inventory with a 5 point Likert scale, 

participants rated completing the tasks on the interfaces 

high on the scales for interest/enjoyment (4.71, SD=0.32), 

perceived confidence (4.45, SD=0.44), and low for 

pressure/tension (1, SD=1.75). All the children chose to 

continue playing with the interfaces after completing the 

tasks. 

DESIGN GUIDELINES 

Based on our formative studies, we distill design guidelines 

for designers to make both blocks-based environments and 

touchscreen applications at large usable by children with 

visual impairments. In particular, we focus on guidelines to 

make applications more usable by both children with low 

vision and children who are blind, as the former are largely 

understudied. 

Make Items Easily Locatable and Viewable on Screen 

In agreement with previous work [22], we found that the 

children in our study with low vision did not like to use the 

zoom function, as it made it harder to interact with items 

and occluded other elements in the application. Based on 

feedback from early sessions, we made the blocks resizable 

instead, so children could see the blocks without occluding 

other parts of the application.  

In our pilot testing of the Modified Android Blockly 

application with TalkBack, we found it was important to 

locate elements close to the edge of the screen, so they 

could be found without vision, as our participants found it 

difficult to navigate “floating” segments of code. Kane et 

al. [9] followed a similar guideline when designing 

interactions for large touch interfaces, and we found it 

equally important for a standard-size iPad. 

We recommend making elements resizable and high 

contrast and locating elements close to the edge of the 

screen to make them findable. 

Reduce the Number of Items on Screen 

Simple interfaces are easier to use for children in general, 

and we found it was especially important to reduce the 

number of focusable items on the screen for both our visual 

and audio interfaces. For children with low vision, having 

fewer items on the screen made it easier to identify and 

remember what the different elements were, and for 

children who were blind, having fewer items made it harder 

to “get lost” while navigating with VoiceOver. However, 

we found it was important to not have multiple screens 

needed to perform an interaction. For example, in our 

location-first select, select, drop, some children found it 

difficult to switch between screens to select blocks, and 

having multiple screens makes it more challenging for 

VoiceOver users to use the search feature. 

Provide Alternatives to Drag and Drop 

We found that it is important to provide alternatives to drag 

and drop. Children were not able to use VoiceOver to 

perform an audio-guided drag and drop, and we also found 

that children with low vision had difficulty with drag and 

drop. They held the iPads close to their faces, making it 

difficult to both drag the block and see what was going on. 

To the best of our knowledge, this is a novel finding, 

although it aligns well with work by Szpiro et al. [22] who 

found that adults with low vision preferred to move closer 

to screens instead of using zoom functions. Drag and drop 

could also pose difficulties for children with motor 

impairments. We found that select, select, drop worked well 

instead, but it was important to make it clear non-visually 

that the application had switched to a “selection” mode and 

to make it clear what the currently selected item was. 

Convey Information in Multiple Ways 

In designing an application that can be used by children 

with a wide range of visual impairments, it is essential to 

convey information in multiple ways. Using spatial layouts 

with both visual and audio cues helped all of the children 

understand program structure. We also found that when we 

did not provide enough visual cues (e.g. cues about where 

audio-cue typed blocks fit with VoiceOver off), the 

children had difficulty using the application. Other 

approaches to making blocks programming environments 

accessible to children with visual impairments (Accessible 

Blockly [6] and work at the University of Colorado, 

Boulder [11,12]), have focused on creating an interface that 

works well with a screen reader, but without many visual 

elements, which would be less appealing and likely more 

difficult to use for children with some vision.   

Dash, the talking robot we used in our study, was very 

popular with all of our participants and is accessible for 

children who are blind, have low vision or are sighted. This 

is in contrast to most current applications that use blocks-

based programming, which rely heavily on visual output for 
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programming tasks (e.g. programming the avatars in 

Scratch or ScratchJr [3,15]). In the future, we believe 

designers should consider how to incorporate more physical 

and auditory output for programming tasks, which would 

make their applications more broadly appealing, and which 

is particularly important for children with visual 

impairments. 

LIMITATIONS AND FUTURE WORK 

There are several limitations of our study. Because of the 

difficulty in recruiting from this population, we had a small 

number of participants, with a wide range of ages and 

abilities, making it difficult to make comparisons between 

participants. We also explored only a small number of 

design possibilities to make these environments accessible 

and were constrained by our desire to only make changes 

that could be adopted by all designers of blocks-based 

environments. There are still open questions we would like 

to explore: how to navigate more complicated hierarchies of 

nested code, how to accommodate multiple “threads” of 

program code, and how to best incorporate speech-based 

commands or other gestures. We also plan to do a formal 

evaluation of Blocks4All. 

CONCLUSION 

We conducted an evaluation of current blocks-based 

environments and found five accessibility barriers. We 

designed multiple techniques to overcome these barriers 

and conducted a formative study to evaluate these 

techniques with five children with visual impairments. We 

distilled the findings from this study into a final design, 

which we plan to evaluate formally, and a set of design 

guidelines for designers of these applications. 
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