
Blocks4All: Overcoming Accessibility Barriers to Blocks
Programming for Children with Visual Impairments

Lauren R. Milne, Richard E. Ladner

Paul G. Allen School of Computer Science and Engineering, University of Washington

Seattle, WA 98195-2350

{milnel2, ladner}@cs.washington.edu

ABSTRACT

Blocks-based programming environments are a popular tool

to teach children to program, but they rely heavily on visual

metaphors and are therefore not fully accessible for children

with visual impairments. We evaluated existing blocks-

based environments and identified five major accessibility

barriers for visually impaired users. We explored

techniques to overcome these barriers in an interview with a

teacher of the visually impaired and formative studies on a

touchscreen blocks-based environment with five children

with visual impairments. We distill our findings on usable

touchscreen interactions into guidelines for designers of

blocks-based environments.

Author Keywords

Accessibility; Computer science education; Visual

impairments; Blocks-based programming environments.

ACM Classification Keywords

H.5.2. Information interfaces and presentation: User

Interfaces.

INTRODUCTION
Recently there has been a big push to incorporate computer

science education in K-12 classrooms. As part of this effort,

blocks-based programming environments, such as Scratch

[15] and Blockly [5] have become very popular [2]. These

blocks-based environments use a puzzle-piece metaphor,

where operations, variables and constants are

conceptualized as “blocks”, puzzle-pieces that can be

dragged and dropped into a program. These blocks will

only snap into place in a location if that placement

generates syntactically correct code. Because these

environments remove the syntax complexities, they can be

a good choice for an introduction to programing and are

used heavily in curricular materials and outreach efforts for

K-12 education; for example, 60 of the 72 computer-based

projects for pre-reader through grade 5 on the Hour of Code

website use blocks-based environments [27].

Unfortunately, these environments rely heavily on visual

metaphors, which renders them not fully accessible for

students with visual impairments. As these students are

already underrepresented and must overcome a number of

barriers to study computer science [17,21], it is important

that they have equal access to curriculum in primary

schools, at the start of the computer science pipeline.

To help with this goal, we evaluated existing blocks-based

environments to answer the following research question:

RQ1: What are accessibility barriers in existing blocks-

based programming environments for people with visual

impairments?

We identified five main accessibility problems, and built

Blocks4All, a prototype environment where we

implemented various means to overcome these barriers

using a touchscreen tablet computer. We chose to

implement this as an Apple iPad application, as iPads have

a built-in screen reader and zoom capabilities, making them

accessible for children with visual impairments. We worked

with a teacher of the visually impaired (TVI) and 5 children

with visual impairments who used Blocks4All to determine

the usability of these techniques and answer the following

questions:

RQ2: What touchscreen interactions can children with

visual impairments use to identify blocks and block types?

RQ3: What touchscreen interactions can children with

visual impairments use to build blocks programs?

RQ4: What touchscreen interactions can children with

visual impairments use to understand the spatial structure

of blocks program code?

Our contributions are:

(1) an understanding of accessibility barriers in blocks-

based environments for children with visual impairments,

(2) design guidelines for designing blocks-based

environments and touchscreen applications for children

with visual impairments, drawn from interviews and

formative testing with children and a TVI, and

Permission to make digital or hard copies of all or part of this work for personal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work

owned by others than the author(s) must be honored. Abstracting with credit is

permitted. To copy otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee. Request permissions

from Permissions@acm.org.

CHI 2018, April 21–26, 2018, Montreal, QC, Canada
© 2018 Copyright is held by the owner/author(s). Publication rights licensed to

ACM.

ACM 978-1-4503-5620-6/18/04$15.00

https://doi.org/10.1145/3173574.3173643

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 69 Page 1

(3) the Blocks4All application itself, as the source code and

application are freely available.1

RELATED WORK

We discuss research in making computer science more

accessible for students with visual impairments and in

making touchscreen interfaces more accessible.

Accessible Computer Science Education

Several researchers have explored making computer science

education more accessible, although most the work has

been for text based environments [13,14,19–21]. While

these tools make text-based programming easier and more

accessible for people with visual impairments; they are all

designed for older people and are not as usable for young

children who may still be developing literacy skills.

Researchers have also looked at developing tools to

introduce programming to younger children. Thieme et al.

describe the development of Torino, a physical computing

language, which consists of “instruction beads” that can be

joined together to create programs, including literal loops

and threads [23].

Figure 1: Image comparing the three main components

(toolbox, workspace and program output) of blocks-based

environments in (a) the Scratch environment [15] and (b) a

version of the Blocks4All environment. In Blocks4All, we used

a robot as the accessible program output, so only needed a

button on the screen to run the program. The Blocks4All

environment shows a “Repeat Two Times” loop with a nested

“Make Goat Noise” block and a nested “If Dash Hears a

Sound, Make Crocodile Noise” statement.

Blocks-based Programming Environments

Blocks-based environments consist of a toolbox of blocks

that can be dragged and dropped into a workspace to create

a program, which can be run to produce some output.

Figure 1 compares (a) the Scratch environment, one of the

earliest and most popular blocks-based environments with

(b) one version of the Blocks4All environment. Existing

blocks-based environments are generally not accessible

(discussed in the next section), but there are two exceptions

to this rule. Researchers at the University of Colorado

Boulder are developing a blocks programming environment

[11,12] and Google has created Accessible Blockly [6].

Both environments use hierarchical menus to represent both

the toolbox and workspace, which can be navigated with

1 https://github.com/milnel2/blocks4alliOS

screen readers. These are both web-based applications

designed to work well with desktop-based screen readers.

Instead of designing a separate interface for visually

impaired children, our goal was to provide insights into

how to make existing block-based environments universally

accessible. To do so, we closely mimicked existing block-

based environments and used touchscreens, which we

believe may be easier for young children to use.

Touchscreen Accessibility

With the introduction of VoiceOver [28] and Talkback [29]

screen readers on iOS and Android platforms, respectively,

touchscreen devices have become very popular among

people with visual impairments [30]. The screen readers use

an interaction technique similar to one introduced by Kane

et al. [8], where a user can explore the screen with a single

finger. As elements on the screen are touched they are

described via speech, and they can be selected via a double

tap anywhere on the screen. There are simple touchscreen

multi-touch gestures to scroll down or move left and right

to new screens, so that one-finger touch does not

accidentally change screens. This interaction method

allows a visually impaired user to understand the spatial

layout of elements on the screen.

As these screen readers are built in to the touchscreen

devices, they interact well with applications that use

standard iOS and Android elements. However, applications

with custom visual elements (such as blocks) and gesture-

based interactions (such as drag and drop) are often not

accessible. As of iOS 11, there are two VoiceOver methods

to replace drag and drop for items on Apple touchscreen

devices. The first is a double tap and hold, which allows the

user to access the underlying drag gesture (and which must

be augmented with audio descriptions of where you are

dragging the item). The second is a select, select, drop, in

which you select an item, pick the drag option out of a

menu of actions and then select a location to place the item.

Both of these methods work to move applications on the

home screen, but to work within applications, developers

have to do extra work: provide the audio descriptions for

the first method and have to include the action for the

second method.

Current research in touchscreen accessibility explores how

adults with visual impairments input gestures and make

sense of spatial information on touchscreens. Kane et al.

[10] explored the gesture preferences of people with visual

impairments for input on touchscreens. As design

guidelines, they recommend that designers favor edges and

corners, reduce demand for location accuracy by creating

bigger targets and reproduce traditional spatial layouts

when possible. Giudice et al. [4] used a vibro-audio

interface on a tablet to help participants with visual

impairments explore simple on-screen elements. They

found that people could identify and explore small bar

graphs, letters and different shapes, but that it was difficult

for participants to move in straight line across the tablet and

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 69 Page 2

suggested using secondary cues for helping them to stay

straight. We incorporated these design guidelines into our

initial design for Blocks4All, exploring if they need to be

adapted for children with visual impairments.

There has been less work on how to develop touchscreen

applications for children with visual impairments. Milne et

al. [18] developed Braille-based games for smartphones

using the touchscreen. Their work shows that young

children had difficulties with many of the gestures that are

used by the screen reader and in many applications.

Therefore, we chose to simplify the number of gestures

used in our application.

Similarly, there has been little work on touchscreen

accessibility for people with low vision. Szpiro et al.

investigated how people with low vision use computing

devices and found that they prefer to rely on their vision as

opposed to access information aurally [22]. However, they

found the use of zoom features to be tedious and time

consuming, and made it difficult to get contextual

information as the zoomed in portion of the interface

obscured parts of the rest of the screen. As we wanted to

design both for children who are blind and those who have

low vision, we incorporated their findings into our design,

and allow users to enlarge portions of the interface, without

obscuring other elements.

ACCESSIBILITY OF EXISTING BLOCKS-BASED
ENVIRONMENTS

We evaluated 9 existing blocks-based environments,

including the web-based environments of Scratch [15],

Blockly [5], Accessible Blockly [6], Tynker [31], and Snap!

[24] and the mobile-based environments Blockly (Android)

[5], Scratch Jr (iOS) [3], Hopscotch (iOS) [32], and Tickle

(iOS) [33] in March 2017.

Methods

We evaluated the web-based applications using the NVDA

screen reader on Firefox and the mobile based ones with

VoiceOver on iOS or Talkback on Android. The guidelines

for evaluation were drawn from the WCAG 2.0 [34],

Android [35] and iOS guidelines [1]. From the guidelines

five accessibility barriers emerged: (1) Accessing Output:

is the output of the programming perceivable (related to

WCAG Principle 1), (2) Accessing Elements: are the

menus and blocks perceivable (WCAG Principle 1), (3)

Moving Blocks: can the blocks/code be moved and edited

using a screen reader (WCAG Principles 2 and 3), (4)

Conveying Program Structure: are the relationships

between programming elements perceivable (WCAG

Principle 1), and (5) Conveying Type Information: are data

types perceivable (WCAG Principle 1).

Modified Android Blockly

The majority of the environments did not allow users to

access the blocks via the screen reader and used

inaccessible gestures. Because Android Blockly is open

source we were able to build a Modified Android Blockly

that fixed trivial accessibility problems (making the blocks

accessible to the screen reader and replacing drag and drop

with selecting a block and then selecting where you would

like to place it) to gain insights into other interactions that

may be difficult. We did pilot testing with two sighted

adults using TalkBack to determine if there were more

accessibility problems we should design for before testing

with visually impaired children. We describe both the

accessibility problems we found with the original Blockly

and the Modified Android Blockly.

Accessibility Problems

We address the five accessibility barriers below.

Accessing Output

We found that Scratch, ScratchJr, Hopscotch, Tynker and

both versions of Blockly had some audio output options,

but the majority of the games and projects focused on visual

output, such as animating avatars. The Tickle application

also had audio output and could be used to control robots,

giving more accessible options. Accessible Blockly is not

currently part of development environment, so there is no

output to evaluate on.

Accessing Elements

We found that, with the exception of Accessible Blockly

and the Tickle application, it was impossible to focus on

blocks in the toolbox or in the workspace using a screen

reader. This is a trivial fix, but it rendered all the other

environments completely inaccessible for screen reader

users.

Moving Blocks

All the applications except Accessible Blockly relied on

drag and drop to move the blocks from the toolbox to the

workspace. Although it is technically feasible for drag and

drop to work with screen readers (e.g. with VoiceOver on

iOS, you can double tap and hold to perform an underlying

gesture), extra information must be provided to place the

blocks. Without the extra information, the user will be

unaware of the current location of the block and where their

intended target is in relation to their current location.

The Tickle application augments drag and drop by

providing an audio description of the current location of the

block as the blocks are dragged across the screen. It does

not work with Apple’s version of select, select, drop. With

Accessible Blockly, blocks are placed in the workspace by

selecting the place in the workspace where you would like

the block to go, and then selecting the block you would like

to place there from a menu that pops up. We tested both the

Accessible Blockly and the Tickle method for placing and

moving blocks in the workspace in the initial design for

Blocks4All.

Conveying Program Structure

When testing the Tickle application and the Modified

Android Blockly application with TalkBack, we found it

was very difficult to determine the structure of the program.

When blocks were nested inside of each other, as in a ‘for’

loop or ‘if’ statement, it was impossible to tell where the

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 69 Page 3

nesting ended and which blocks were outside. Additionally,

it was difficult to locate blocks on the screen and difficult to

navigate in a straight line (similar to what Kane et al. [9]

found) either down between block statements or

horizontally to find nested blocks. In Accessible Blockly,

program structure is conveyed in a hierarchical list, with

nested statements contained as sublists under their

containing statement. In our initial designs, we chose to

represent this hierarchy aurally and spatially.

Conveying Type Information

In all the applications, apart from Accessible Blockly, type

information was conveyed visually via the shape and color

of the block. This is not accessible via screen reader and

due to the size of the blocks not very accessible for people

with low vision. Some applications (e.g. ScratchJr) avoid

the need for types by having drop down menus to select

certain typed options (e.g. having a menu with the number

of times a repeat loop will repeat as opposed to introducing

a type for numbers). Accessible Blockly explicitly names

the type needed at each location (e.g. Boolean needed) and

the type of each block is listed in the toolbox.

DESIGN EXPLORATION

In designing our environment, we wanted to create an

environment that was independently usable by and

engaging for people who are sighted, who have low vision

and who are blind, making only changes that could be

adopted by existing blocks-based environments.

Additionally, we wanted to support the features of blocks-

based environments that make them suitable for young

children: (1) a lack of syntax errors due to blocks that are

units of code, which can only fit in places that are

syntactically correct, (2) code creation using a menu of

blocks that relies on recognition instead of recall, and (3)

clear hints about the type and placement of blocks, which in

traditional blocks-based environments is conveyed via

shape and placement of blocks.

We chose to develop Blocks4All on a touchscreen device,

and specifically an iPad, for multiple reasons: (1) they are

popular among people with visual impairments and have a

state-of-the-art screen reader that is built-in [30], (2) they

are easy to use and popular for children in educational

contexts (iPads are actually provided to every child in some

school districts), (3) many blocks-based environments are

already available as touchscreen applications [3,33], and (4)

touchscreens used with a screen reader allow for spatial

exploration of the screen, which could be useful for

conveying program structure.

Initial Design

The initial design of Blocks4All was based on prior

research and our own design exploration. We summarize

our different approaches to overcome the five accessibility

barriers we identified.

Accessing Output

We created a blocks-based environment that can be used to

control a Dash robot [26], as this makes for tangible output

that is very accessible for children with visual impairments.

We included commands to move the robot (e.g. “Drive

Forward/Backward”, “Turn Right”), for the robot to make

sounds (e.g. “Bark like a Dog”, “Say Hi”), as well as repeat

and ‘if’ statements.

Accessing Elements

In our design, blocks can be accessed using VoiceOver,

which provides the name, the location and the type of the

block, (e.g. “Drive Forward, Block 2 of 4 in workspace,

operation”). We also give hints on how to manipulate the

blocks (e.g. “double tap to move block”). Blocks in the

workspace are placed along the bottom of the screen to help

with orientation, as it is easy for blind users to “drift off

course” when tracing elements on a touchscreen [9,21].

Figure 2. Two methods to move blocks: (a) audio-guided drag

and drop, which speaks aloud the location of the block as it is

dragged across the screen (gray box indicates audio output of

program) and (b) location-first select, select, drop, where a

location is selected via gray “connection blocks”, then the

toolbox of blocks that can be placed there appears.

Moving Blocks

We initially explored two methods to move blocks: (1)

audio-guided drag and drop, with a similar set-up to

traditional blocks-based environments with the toolbox on

the left side of the screen and which gives feedback about

where in the program a block is as it is dragged across the

screen (e.g. “Place block after Move Forward Block”)

(Figure 2a), and (2) location-first select, select, drop, where

a location is selected in the workspace via “connection

blocks,” which represent the connecting points of the block

(analogous to the jigsaw puzzle piece tabs in the visual

version), and then a full screen menu pops up with the

toolbox of blocks that can be placed at that location (Figure

2b). This is slightly different from traditional blocks-based

environments, in which you first select the block and then

the location to place it, but it is logically similar to the

method used in Accessible Blockly, although the physical

manifestation is different.

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 69 Page 4

Figure 3. Two methods to indicate the spatial structure of the

code: (a) a spatial representation with nested statements

placed vertically above inner blocks of enclosing statements,

and (b) an audio representation with nesting communicated

aurally with spearcons (shortened audio representations of

words).

Conveying Program Structure

We tested two methods to indicate the spatial structure of

the code. The first is a spatial representation with repeat

loops and conditionals represented with both a start and an

end block and nested statements placed vertically above

special inner blocks of their enclosing statements (Figure

3a). Navigating with VoiceOver, users can determine if or

how deeply nested a statement is, by counting the number

of “Inside _” blocks below it. The second is an audio

representation with start and end blocks for the enclosing

statements. When nested blocks are selected, nesting is

communicated aurally with spearcons: short, rapidly spoken

words, in this case “if” and “repeat” [25] (Figure 3b).

Figure 4. The first method to access different block types:

embedded typed blocks, accessed from a menu embedded

within each block (e.g. "Repeat 2/3 times")

Figure 5. The second method to access different block types:

audio-cue typed blocks, when a typed block in the toolbox and

the blocks in the workspace that accept it play the same

distinct audio cues.

 Conveying Type Information

 Our prototype application supports three types of blocks:

(1) operations (e.g. “Drive Forward”), (2) numbers (used in

conjunction with repeat loops and as distances for driving

blocks), and (3) Boolean statements (e.g. “Hears Sound”

and “Senses Obstacle” used in conjunction with ‘if’

statements). We explored two methods to access these

different block types. The first is embedded typed blocks

within operation blocks. These can be accessed from a

menu embedded within each block (e.g. “Drive Forward

10/20/30”) (Figure 4). To access these menus with

VoiceOver, you select the containing block and then swipe

up or down to cycle through the options. This is similar to

the approach taken in the ScratchJr [3] and the Dash robot

[26] applications. The second is audio-cue typed blocks

(Figure 5). In this method, when a number or Boolean block

is selected with VoiceOver in the menu, it plays a distinct

audio cue (two short low-pitched notes for numbers and

two short high-pitched notes for Booleans), and the

workspace blocks play matching audio cues for the types

they can accept (‘if’ statements play two short high-pitched

notes as they can accept Booleans). This information is also

conveyed visually with the shapes of the blocks: ‘if’

statements have a triangular top tab and Booleans have an

inverted triangle to indicate they fit together, while repeat

statements have a rectangular top tab and numbers have an

inverted rectangle (Figure 5). The visual approach is similar

to traditional blocks-based environments (e.g. Blockly [5]

and Scratch [15]), but the tabs are larger to accommodate

users with low vision.

DESIGN OF FORMATIVE STUDY AND INTERVIEW

Interview with Teacher of the Visual Impaired

To collect feedback on our initial designs, we conducted a

semi-structured interview with a teacher of the visually

impaired (TVI), who works with elementary school-aged

children in a local district. We asked about her work

teaching children how to use technology and the assistive

tools (screen readers, zoom, connectable braille displays,

etc.…) on touchscreen devices. We also asked her to

provide feedback on our different designs, and we include

her feedback in the discussion below on our design.

Participants with Visual Impairments

We recruited 5 children (3 male) aged 5-10 with visual

impairments through our contacts with teachers of the

visually impaired for a formative study (Table 1). Two of

the children (P4, P5) used VoiceOver exclusively (P4 has

some residual sight), one (P2) relied on sight and

occasionally used VoiceOver to explore new blocks, and

two children relied entirely on sight (P1, P3), holding the

application close to their faces to read.

Methods

The children participated in one to four 60-90 minute

sessions in which they programmed a Dash robot [26] using

an iPad running iOS 10.3.3.

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 69 Page 5

In each session, we introduced them to the interfaces using

cardboard cutouts with Braille and large lettering to indicate

the different application elements. For each of three

sessions, the children used two interfaces (counterbalanced

between children) to complete four simple tasks for each

interface and then had free time to program the robot to do

whatever they pleased. These tasks were modeled after the

tasks in the hour of code for the Dash robot [26], but were

modified to work for children with low vision (e.g. “Have

Dash drive forward, turn right and drive forward to run into

an obstacle”).

In the first session, the children tried the two methods for

moving blocks. Based on his age and shorter attention span,

P3 only participated in this first session. In the second

session, we introduced repeat loops, and the children used

the two different methods for conveying program structure.

In this session, we had tasks that required single and double

nested repeat loops (e.g. “Have Dash drive in a square using

only one forward and one turn left block”). In the third and

fourth sessions, we introduced ‘if’ statements, and the

children used the different methods for accessing type

information. P1 and P2 used the embedded typed blocks in

session 3 and the audio-cue typed blocks in session 4, and

P3 and P4 used both in session 3. In these later sessions, we

had tasks that required using different conditions for repeat

loops and conditionals (e.g. “Have Dash ‘Say Hi’ if he

hears a sound”).

Measures

For each task, we video-recorded the children and evaluated

the interfaces for usability issues. We also measured the

time it took to complete the task and signs of excitement

(exclamations, laughing and smiling) and

tiredness/boredom (yawns, frowns) [7]. At the end of each

session, we asked for feedback on the different interfaces.

In the final session, we asked the children questions from

the scales for interest/enjoyment, perceived competence and

effort/importance from Intrinsic Motivation Inventory to

determine how engaged and motivated they felt during the

programming activities [16]. The questions were trivially

changed to match the tasks from the study (e.g. “I think I

am pretty good at this activity” became “I think I am pretty

good at programming robots”). Based on the small number

and wide range in ability and age of participants, we report

only summaries of our findings on the usability of the

interfaces.

RESULTS OF FORMATIVE STUDY AND INTERVIEW

We report on the feedback from the formative study and

interview, and the resulting changes to the design of

Blocks4All.

Accessing Output

We chose to use the Dash robot as the output for the

programming tasks. All five of the children greatly enjoyed

using the robot, and three of the five children asked to be

photographed with the robot. All the children, even those

with very little or no functional vision were able to hear the

robot and follow its movements by placing a hand on it. In

order to make it clear to the children when they successfully

completed a task such as “Have Dash move in a square”,

we created towers out of wooden blocks that the robot

would knock down for each segment of the task (e.g. in

each corner of the square). All of the children thought this

was quite fun. We did not explore any other accessible

programming outputs in the study, but would like to add the

option of recording or typing your own audio for the robot

to speak in future prototypes.

Accessing Elements

To answer to the first part of RQ2: What touchscreen

interactions can children with visual impairments use to

identify blocks and block types? we found that children in

our study could access blocks in our prototype application

most easily when the blocks (1) were aligned along the

bottom of the screen, (2) were resizable, (3) were separated

by white space, and (4) could be accessed with both

VoiceOver and through a keyboard. We elaborate on our

findings below.

Initial Findings

All the children could focus on the blocks in Session 1;

however, P5 had difficulty selecting blocks using the

standard double tap gesture with VoiceOver, so for later

sessions, she used a Bluetooth connected keyboard

connected to the iPad to do the selection. The keyboard was

Participant Age Gender
Evaluation

Sessions

Level of

Corrected Vision
Previous Technology Use

P1 8 Female 4 20/150
Lots of experience with screen readers,

uses iPads and tablets.

P2 8 Male 4 20/80-20/100
Uses iPad at school as assistive technology

device with both VoiceOver and Zoom

P3 5 Male 1 20/100 Uses iPads at home for games.

P4 10 Male 3 20/400
Uses VoiceOver on iPad and iPhone. Uses

Apple computer, Braille, CCTV, Kindle.

P5 9 Female 3
Totally blind, no

light perception

Uses iPad at school with VoiceOver and

refreshable Braille reader and Braille Note.

Table 1. Participant Details.

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 69 Page 6

used with “Quick Navigation” on in conjunction with

VoiceOver to focus on items in the application using left

and right arrows and to select items by using the up and

down arrows simultaneously [36].

None of the children with some vision (P1, P2, P3, and P4)

used the zoom function on their iPad to view the blocks,

instead they relied on VoiceOver or held the iPad within

inches of their faces. In our interview with the TVI, she

reported that often children had difficulty using the zoom

feature because they had to switch between getting an

overview of the application to focusing in on an element.

Design Modifications

Based on the feedback of the children with some vision, we

added high contrast white space between the blocks in the

toolbox and made the blocks resizable in both the toolbox

and the workspace for all participants after session 1. This

allowed children with some sight to see the details on the

blocks, but still left the application layout the same so that

they could get an overview of the program.

Moving Blocks

In answer to RQ3: What touchscreen interactions can

children with visual impairments use to build blocks

programs? we explored multiple techniques to move blocks

and found that (1) all the children in our study could use the

select, select, drop method, (2) none of the children could

not use the audio-guided drag and drop method with

VoiceOver and (3) all the children preferred first choosing a

block to move as opposed to a location to move it to when

using the select, select, drop method. We elaborate on our

findings below.

Initial Findings

All of the children had difficulty with the audio-guided

drag and drop method. Neither of the children (P4, P5) that

used VoiceOver could perform the VoiceOver-modified

drag and drop gesture. The children that relied on sight with

the iPad held close to their faces (P1, P3) found the drag

and drop gesture difficult to perform as well, because

moving the iPad to see the blocks interfered with the

gesture. The location-first select, select, drop method

worked well, and the children were able to complete all the

tasks. However, P5 found that switching to a new screen to

select a block after selecting a location was confusing with

VoiceOver. In the post-session interviews, P2 and P4

expressed that they liked the idea of selecting a block first

and then a location (as in the drag and drop interface)

better. Also, the TVI noted that many VoiceOver users use

the item chooser where you can search for an element on

the current screen by name, making it faster to use an

interface if you do not have to switch between screens to

access items.

Design Modifications

We created a hybrid of our two methods: blocks-first select,

select, drop, where blocks are selected from the toolbox on

the left side of the screen. Then the application switches

into “selection mode”, where the toolbox menu is replaced

with information about the selected block, and a location

can be selected in the workspace. All the participants who

participated in two or more sessions (P1, P2, P4 and P5)

used this method after session 1 and stated that they

preferred this “hybrid” method to either of the two original

methods.

Conveying Program Structure

In answer to RQ4: What touchscreen interactions can

children with visual impairments use to understand the

spatial structure of blocks program code? we found that

children were able to understand program structure using

both the spatial and audio representations we explored,

and most participants preferred the spatial representation.

Initial Findings

The participants were able to understand both the spatial

and audio representations of the program structure. P1, P2,

P4, and P5 could complete all tasks with both

representations (P3 did not attempt to use either as he only

participated in the first session). Both P1 and P4 preferred

the spatial representation, and P4 noted that he did not pay

attention to the spearcons when using VoiceOver in the

audio representation. The TVI noted that many children

with visual impairments use a spatial mental model to

remember information, so she thought the spatial interface

would help with recall. P2 thought the spatial representation

was easier to use, but thought that the audio presentation

“looked nicer”.

Design Modifications

After the second session, we used the spatial

representation to convey program structure. We modified

the order that VoiceOver read the blocks in the spatial

representation so that it focused on the contained block first

followed by the “Inside _” blocks (e.g. “Drive Forward

Block” followed by “Inside Repeat Two Times”).

Conveying Type Information

In answering the second part of RQ2: What touchscreen

interactions can children with visual impairments use to

identify blocks and block types? we found that children

were able to use both methods to select blocks, but that the

audio-cue typed blocks need better cues for children who

are not using VoiceOver. We elaborate on these findings

below.

Initial Findings

All participants, other than P3 who did not attempt it, were

able to use both methods of selecting typed blocks. P2 and

P5 had some difficulty scrolling through the menus to select

the embedded typed blocks, but both were able to do so

after some practice. We found that the children who used

VoiceOver (P4, P5) with the audio-cue typed blocks had an

easier time determining where Boolean and number

statements could fit, as they received the audio cues from

VoiceOver and could listen for it as they chose where to

place the blocks. The children who did not use VoiceOver

(P1, P2) often tried to place the typed blocks in places

where they could not go, indicating that the visual cue was

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 69 Page 7

not enough. Additionally, although the children found the

number blocks quite easily in the toolbox, it took some trial

and error for them to find the Boolean type blocks, likely

because they were less familiar with that type. This was not

a problem with the embedded typed blocks as the typed

blocks were contained inside the conditional and repeat

blocks and were not in the toolbox menu.

Design Modifications

Although it was more difficult for the children to grasp, we

plan to use the audio-cue typed blocks in the future, as this

method allows for more flexibility in creating blocks and

programs and can more easily accommodate creating more

complex statements. However, we plan to add better visual

and audio cues when VoiceOver is not on, such as

highlighting the blocks where a typed block will fit and

using an error sound to indicate if a block cannot be placed

in a location.

Other Feedback

We received positive feedback on our interfaces. The

children liked the all the interfaces: all 5 reported that they

thought the tasks were a 5 or “really fun” on a Likert fun

scale after using each interface. Using the Intrinsic

Motivation Inventory with a 5 point Likert scale,

participants rated completing the tasks on the interfaces

high on the scales for interest/enjoyment (4.71, SD=0.32),

perceived confidence (4.45, SD=0.44), and low for

pressure/tension (1, SD=1.75). All the children chose to

continue playing with the interfaces after completing the

tasks.

DESIGN GUIDELINES

Based on our formative studies, we distill design guidelines

for designers to make both blocks-based environments and

touchscreen applications at large usable by children with

visual impairments. In particular, we focus on guidelines to

make applications more usable by both children with low

vision and children who are blind, as the former are largely

understudied.

Make Items Easily Locatable and Viewable on Screen

In agreement with previous work [22], we found that the

children in our study with low vision did not like to use the

zoom function, as it made it harder to interact with items

and occluded other elements in the application. Based on

feedback from early sessions, we made the blocks resizable

instead, so children could see the blocks without occluding

other parts of the application.

In our pilot testing of the Modified Android Blockly

application with TalkBack, we found it was important to

locate elements close to the edge of the screen, so they

could be found without vision, as our participants found it

difficult to navigate “floating” segments of code. Kane et

al. [9] followed a similar guideline when designing

interactions for large touch interfaces, and we found it

equally important for a standard-size iPad.

We recommend making elements resizable and high

contrast and locating elements close to the edge of the

screen to make them findable.

Reduce the Number of Items on Screen

Simple interfaces are easier to use for children in general,

and we found it was especially important to reduce the

number of focusable items on the screen for both our visual

and audio interfaces. For children with low vision, having

fewer items on the screen made it easier to identify and

remember what the different elements were, and for

children who were blind, having fewer items made it harder

to “get lost” while navigating with VoiceOver. However,

we found it was important to not have multiple screens

needed to perform an interaction. For example, in our

location-first select, select, drop, some children found it

difficult to switch between screens to select blocks, and

having multiple screens makes it more challenging for

VoiceOver users to use the search feature.

Provide Alternatives to Drag and Drop

We found that it is important to provide alternatives to drag

and drop. Children were not able to use VoiceOver to

perform an audio-guided drag and drop, and we also found

that children with low vision had difficulty with drag and

drop. They held the iPads close to their faces, making it

difficult to both drag the block and see what was going on.

To the best of our knowledge, this is a novel finding,

although it aligns well with work by Szpiro et al. [22] who

found that adults with low vision preferred to move closer

to screens instead of using zoom functions. Drag and drop

could also pose difficulties for children with motor

impairments. We found that select, select, drop worked well

instead, but it was important to make it clear non-visually

that the application had switched to a “selection” mode and

to make it clear what the currently selected item was.

Convey Information in Multiple Ways

In designing an application that can be used by children

with a wide range of visual impairments, it is essential to

convey information in multiple ways. Using spatial layouts

with both visual and audio cues helped all of the children

understand program structure. We also found that when we

did not provide enough visual cues (e.g. cues about where

audio-cue typed blocks fit with VoiceOver off), the

children had difficulty using the application. Other

approaches to making blocks programming environments

accessible to children with visual impairments (Accessible

Blockly [6] and work at the University of Colorado,

Boulder [11,12]), have focused on creating an interface that

works well with a screen reader, but without many visual

elements, which would be less appealing and likely more

difficult to use for children with some vision.

Dash, the talking robot we used in our study, was very

popular with all of our participants and is accessible for

children who are blind, have low vision or are sighted. This

is in contrast to most current applications that use blocks-

based programming, which rely heavily on visual output for

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 69 Page 8

programming tasks (e.g. programming the avatars in

Scratch or ScratchJr [3,15]). In the future, we believe

designers should consider how to incorporate more physical

and auditory output for programming tasks, which would

make their applications more broadly appealing, and which

is particularly important for children with visual

impairments.

LIMITATIONS AND FUTURE WORK

There are several limitations of our study. Because of the

difficulty in recruiting from this population, we had a small

number of participants, with a wide range of ages and

abilities, making it difficult to make comparisons between

participants. We also explored only a small number of

design possibilities to make these environments accessible

and were constrained by our desire to only make changes

that could be adopted by all designers of blocks-based

environments. There are still open questions we would like

to explore: how to navigate more complicated hierarchies of

nested code, how to accommodate multiple “threads” of

program code, and how to best incorporate speech-based

commands or other gestures. We also plan to do a formal

evaluation of Blocks4All.

CONCLUSION

We conducted an evaluation of current blocks-based

environments and found five accessibility barriers. We

designed multiple techniques to overcome these barriers

and conducted a formative study to evaluate these

techniques with five children with visual impairments. We

distilled the findings from this study into a final design,

which we plan to evaluate formally, and a set of design

guidelines for designers of these applications.

ACKNOWLEDGMENTS

This work supported by the National Science Foundation

Graduate Research Fellowship under Grant No. DGE-

1256082 and a SIGCSE special projects grant.

REFERENCES

1. Apple. 2012. Accessibility Programming Guide for

iOS. Retrieved February 25, 2017 from

https://developer.apple.com/library/content/documenta

tion/UserExperience/Conceptual/iPhoneAccessibility/I

ntroduction/Introduction.html#//apple_ref/doc/uid/TP4

0008785

2. David Bau, Jeff Gray, Caitlin Kelleher, Josh Sheldon,

and Franklyn Turbak. 2017. Learnable Programming:

Blocks and Beyond. Commun. ACM 60, 6: 72–80.

https://doi.org/10.1145/3015455

3. Louise P. Flannery, Brian Silverman, Elizabeth R.

Kazakoff, Marina Umaschi Bers, Paula Bontá, and

Mitchel Resnick. 2013. Designing ScratchJr: Support

for Early Childhood Learning Through Computer

Programming. In Proceedings of the 12th International

Conference on Interaction Design and Children (IDC

’13), 1–10. https://doi.org/10.1145/2485760.2485785

4. Nicholas A. Giudice, Hari Prasath Palani, Eric

Brenner, and Kevin M. Kramer. 2012. Learning Non-

visual Graphical Information Using a Touch-based

Vibro-audio Interface. In Proceedings of the 14th

International ACM SIGACCESS Conference on

Computers and Accessibility (ASSETS ’12), 103–110.

https://doi.org/10.1145/2384916.2384935

5. Google. Blockly. Retrieved from

https://developers.google.com/blockly/

6. Google. Accessible Blockly. Retrieved from

https://blockly-

demo.appspot.com/static/demos/accessible/index.html

7. Libby Hanna, Kirsten Risden, and Kirsten Alexander.

1997. Guidelines for Usability Testing with Children.

interactions 4, 5: 9–14.

https://doi.org/10.1145/264044.264045

8. Shaun K. Kane, Jeffrey P. Bigham, and Jacob O.

Wobbrock. 2008. Slide Rule: Making Mobile Touch

Screens Accessible to Blind People Using Multi-touch

Interaction Techniques. In Proceedings of the 10th

International ACM SIGACCESS Conference on

Computers and Accessibility (Assets ’08), 73–80.

https://doi.org/10.1145/1414471.1414487

9. Shaun K. Kane, Meredith Ringel Morris, Annuska Z.

Perkins, Daniel Wigdor, Richard E. Ladner, and Jacob

O. Wobbrock. 2011. Access Overlays: Improving Non-

visual Access to Large Touch Screens for Blind Users.

In Proceedings of the 24th Annual ACM Symposium on

User Interface Software and Technology (UIST ’11),

273–282. https://doi.org/10.1145/2047196.2047232

10. Shaun K. Kane, Jacob O. Wobbrock, and Richard E.

Ladner. 2011. Usable Gestures for Blind People:

Understanding Preference and Performance. In

Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (CHI ’11), 413–422.

https://doi.org/10.1145/1978942.1979001

11. Varsha Koushik and Clayton Lewis. 2016. An

Accessible Blocks Language: Work in Progress. In

Proceedings of the 18th International ACM

SIGACCESS Conference on Computers and

Accessibility (ASSETS ’16), 317–318.

https://doi.org/10.1145/2982142.2982150

12. Clayton Lewis. 2014. Work in Progress Report:

Nonvisual Visual Programming. Psychology of

Programming Interest Group. Retrieved from

http://users.sussex.ac.uk/~bend/ppig2014/14ppig2014_

submission_5.pdf

13. Stephanie Ludi, Mohammed Abadi, Yuji Fujiki, Priya

Sankaran, and Spencer Herzberg. 2010. JBrick:

Accessible Lego Mindstorm Programming Tool for

Users Who Are Visually Impaired. In Proceedings of

the 12th International ACM SIGACCESS Conference

on Computers and Accessibility (ASSETS ’10), 271–

272. https://doi.org/10.1145/1878803.1878866

14. Stephanie Ludi and Tom Reichlmayr. 2011. The Use

of Robotics to Promote Computing to Pre-College

Students with Visual Impairments. Trans. Comput.

Educ. 11, 3: 20:1–20:20.

https://doi.org/10.1145/2037276.2037284

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 69 Page 9

15. John Maloney, Mitchel Resnick, Natalie Rusk, Brian

Silverman, and Evelyn Eastmond. 2010. The Scratch

Programming Language and Environment. Trans.

Comput. Educ. 10, 4: 16:1–16:15.

https://doi.org/10.1145/1868358.1868363

16. Edward McAuley, Terry Duncan, and Vance V.

Tammen. 1989. Psychometric Properties of the

Intrinsic Motivation Inventory in a Competitive Sport

Setting: A Confirmatory Factor Analysis. Research

Quarterly for Exercise and Sport 60, 1: 48–58.

https://doi.org/10.1080/02701367.1989.10607413

17. S. Mealin and E. Murphy-Hill. 2012. An exploratory

study of blind software developers. In 2012 IEEE

Symposium on Visual Languages and Human-Centric

Computing (VL/HCC), 71–74.

https://doi.org/10.1109/VLHCC.2012.6344485

18. Lauren R. Milne, Cynthia L. Bennett, Richard E.

Ladner, and Shiri Azenkot. 2014. BraillePlay:

Educational Smartphone Games for Blind Children. In

Proceedings of the 16th International ACM

SIGACCESS Conference on Computers & Accessibility

(ASSETS ’14), 137–144.

https://doi.org/10.1145/2661334.2661377

19. Jaime Sánchez and Fernando Aguayo. 2005. Blind

Learners Programming Through Audio. In CHI ’05

Extended Abstracts on Human Factors in Computing

Systems (CHI EA ’05), 1769–1772.

https://doi.org/10.1145/1056808.1057018

20. Andreas Stefik, Christopher Hundhausen, and Robert

Patterson. 2011. An Empirical Investigation into the

Design of Auditory Cues to Enhance Computer

Program Comprehension. Int. J. Hum.-Comput. Stud.

69, 12: 820–838.

https://doi.org/10.1016/j.ijhcs.2011.07.002

21. Andreas M. Stefik, Christopher Hundhausen, and

Derrick Smith. 2011. On the Design of an Educational

Infrastructure for the Blind and Visually Impaired in

Computer Science. In Proceedings of the 42Nd ACM

Technical Symposium on Computer Science Education

(SIGCSE ’11), 571–576.

https://doi.org/10.1145/1953163.1953323

22. Sarit Felicia Anais Szpiro, Shafeka Hashash, Yuhang

Zhao, and Shiri Azenkot. 2016. How People with Low

Vision Access Computing Devices: Understanding

Challenges and Opportunities. In Proceedings of the

18th International ACM SIGACCESS Conference on

Computers and Accessibility (ASSETS ’16), 171–180.

https://doi.org/10.1145/2982142.2982168

23. Anja Thieme, Cecily Morrison, Nicolas Villar, Martin

Grayson, and Siân Lindley. 2017. Enabling

Collaboration in Learning Computer Programing

Inclusive of Children with Vision Impairments. In

Proceedings of the 2017 Conference on Designing

Interactive Systems (DIS ’17), 739–752.

https://doi.org/10.1145/3064663.3064689

24. UC: Berkley. Snap! Build your own blocks. Retrieved

from https://snap.berkeley.edu/

25. Bruce N. Walker, Amanda Nance, and Jeffrey Lindsay.

2006. Spearcons: speech-based earcons improve

navigation performance in auditory menus. Retrieved

September 10, 2017 from

https://smartech.gatech.edu/handle/1853/50642

26. Wonder Workshop. Blockly iOS Application for Dot

and Dash Robots. Retrieved from

https://www.makewonder.com/apps/blockly

27. Hour of Code. Code.org. Retrieved September 3, 2017

from https://hourofcode.com/learn

28. Vision Accessibility - Mac - Apple. Retrieved

September 5, 2017 from

https://www.apple.com/accessibility/mac/vision/

29. Get started on Android with TalkBack - Android

Accessibility Help. Retrieved September 5, 2017 from

https://support.google.com/accessibility/android/answe

r/6283677?hl=en

30. WebAIM: Screen Reader User Survey #6 Results.

Retrieved February 16, 2017 from

http://webaim.org/projects/screenreadersurvey6/#mobil

e

31. Coding for Kids. Tynker.com. Retrieved September 5,

2017 from https://www.tynker.com/

32. Hopscotch - Learn to Code Through Creative Play.

Retrieved September 5, 2017 from

https://www.gethopscotch.com/

33. Tickle: Program Star Wars BB-8, LEGO, Drones,

Arduino, Dash & Dot, Sphero, Robots, Hue, Scratch,

Swift, and Smart Homes on your iPhone and iPad.

Tickle Labs, Inc. Retrieved February 27, 2017 from

https://www.tickleapp.com/

34. How to Meet WCAG 2.0. Retrieved February 25, 2017

from https://www.w3.org/WAI/WCAG20/quickref/

35. Accessibility Developer Checklist | Android

Developers. Retrieved February 25, 2017 from

https://developer.android.com/guide/topics/ui/accessibi

lity/checklist.html

36. iOS VoiceOver Gesture, Keyboard & Braille Shortcuts

| AxS Lab. Retrieved September 16, 2017 from

http://axslab.com/articles/ios-voiceover-gestures-and-

keyboard-commands.php

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 69 Page 10

